Loss of Tsc1, but not Pten, in renal tubular cells causes polycystic kidney disease by activating mTORC1.

نویسندگان

  • Jing Zhou
  • James Brugarolas
  • Luis F Parada
چکیده

Tuberous sclerosis complex (TSC) is a genetic disorder linked to mutations of either the TSC1 or TSC2 gene, which encode proteins that form a complex to negatively regulate mammalian target of rapamycin complex 1 (mTORC1). Clinically, a small percentage of TSC patients develop severe infantile polycystic kidney disease (PKD), which is believed to be caused by deletion of the contiguous TSC2 and PKD1 genes on human chromosome 16. Recent studies have implicated the TSC/mTORC1 signaling pathway in PKD, but how dysfunction of the TSC/mTORC1 pathway induces PKD is not clear. We report a PKD mouse model created by knocking out Tsc1 in a subset of renal tubular cells. Extensive renal cyst formation in these mice is accompanied by broadly elevated mTORC1 activity in both cell autonomous and non-cell autonomous compartments. Furthermore, cyst development requires mTORC1 activation, as low dosage of rapamycin administration effectively blocks cyst formation. Interestingly, disruption of Pten, an upstream regulator of TSC1/TSC2, in the same cells, does not lead to PKD seemingly due to limited activation of mTORC1, suggesting that PTEN may not be a major upstream regulator of TSC/mTORC1 during early postnatal kidney development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of mTORC1 in collecting ducts causes hyperkalemia.

Mutation of TSC (encoding tuberous sclerosis complex protein) and activation of mammalian target of rapamycin (mTOR) have been implicated in the pathogenesis of several renal diseases, such as diabetic nephropathy and polycystic kidney disease. However, the role of mTOR in renal potassium excretion and hyperkalemia is not known. We showed that mice with collecting-duct (CD)-specific ablation of...

متن کامل

mTORC1-mediated inhibition of polycystin-1 expression drives renal cyst formation in tuberous sclerosis complex

Previous studies report a cross-talk between the polycystic kidney disease (PKD) and tuberous sclerosis complex (TSC) genes. mTOR signalling is upregulated in PKD and rapamycin slows cyst expansion, whereas renal inactivation of the Tsc genes causes cysts. Here we identify a new interplay between the PKD and TSC genes, with important implications for the pathophysiology of both diseases. Kidney...

متن کامل

Livers with Constitutive mTORC1 Activity Resist Steatosis Independent of Feedback Suppression of Akt

Insulin resistance is an important contributing factor in non-alcoholic fatty liver disease. AKT and mTORC1 are key components of the insulin pathway, and play a role in promoting de novo lipogenesis. However, mTORC1 hyperactivity per se does not induce steatosis in mouse livers, but instead, protects against high-fat diet induced steatosis. Here, we investigate the in vivo mechanism of steatos...

متن کامل

FoxOs enforce a progression checkpoint to constrain mTORC1-activated renal tumorigenesis.

mTORC1 is a validated therapeutic target for renal cell carcinoma (RCC). Here, analysis of Tsc1-deficient (mTORC1 hyperactivation) mice uncovered a FoxO-dependent negative feedback circuit constraining mTORC1-mediated renal tumorigenesis. We document robust FoxO activation in Tsc1-deficient benign polycystic kidneys and FoxO extinction on progression to murine renal tumors; murine renal tumor p...

متن کامل

Cystogenesis and elongated primary cilia in Tsc1-deficient distal convoluted tubules.

Tuberous sclerosis complex (TSC) is a multiorgan hamartomatous disease caused by loss of function mutations of either the TSC1 or TSC2 genes. Neurological symptoms of TSC predominate in younger patients, but renal pathologies are a serious aspect of the disease in older children and adults. To study TSC pathogenesis in the kidney, we inactivated the mouse Tsc1 gene in the distal convoluted tubu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 18 22  شماره 

صفحات  -

تاریخ انتشار 2009